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Geometrical clusters in two-dimensional random-field Ising models
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We consider geometrical or Ising clusters (i.e., domains of parallel spins) in the square lattice random-field
Ising model by varying the strength of the Gaussian random field A. In agreement with the conclusion of a
previous investigation [Phys. Rev. E 63, 066109 (2001)], the geometrical correlation length, i.e., the average
size of the clusters ¢ is finite for A> A, ~1.65 and divergent for A<A_. The scaling function of the distribu-
tion of the mass of the clusters as well as the geometrical correlation function are found to involve the scaling
exponents of critical percolation. On the other hand, the divergence of the correlation length, &A)~ (A
—A,)7", with v=2, is related to that of tricritical percolation. It is verified numerically that critical geometrical

correlations transform conformally.
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I. INTRODUCTION

The random-field Ising model (RFIM) is a prototype of
random systems in which the disorder is coupled to the order
parameter of the system [1]. It has experimental realizations,
such as a diluted antiferromagnet in a field [2]. For some
time there was a debate about the lower critical dimension d,,
of the systems. While domain-wall stability arguments by
Imry and Ma [3] predicted d,=2, perturbative field-
theoretical calculations [4] have led to a different value of
d;=3. Later, Fisher argued [5] that due to the existence of
several metastabile states the perturbative renormalization
does not work. Indeed, exact results by Bricmont and Kupi-
ainen [6] show that in the three-dimensional (3D) RFIM
there is ferromagnetic order and later Aizenman and Wehr
[7] has proven rigorously that at d=2 the Gibbs state is
unique, thus d;=2.

Although there is no ferromagnetic long-range order in
the RFIM at d=2 there are several interesting questions that
are related to the structure of clusters of parallel spins and
the corresponding geometrical correlations in the system.
Even at zero temperature, at 7=0, the ground state of the
system is not trivial. This is the result of a competition be-
tween the ordering effect of the ferromagnetic nearest-
neighbor interaction J and the disordering effect of the ran-
dom field with a strength A, which is given by the variance
of the distribution. In the limit of strong random fields
A/J>1, the direction of the spins follows the actual direc-
tion of the random fields and the ground state is equivalent to
a site-percolation problem [8] in which an up (down) spin
corresponds to an occupied (empty) lattice site. Considering
the square lattice, here the occupation probability p=0.5 is
below the site-percolation threshold [8] p.=0.593. Thus in
the ground state the domains of the parallel spins have only
a finite extent, the linear size of which, &, is given by the
correlation length of percolation at p=0.5. As the strengths
of the random field are decreased there is a tendency of the
formation of larger parallel domains, the typical size of
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which is a monotonously increasing function with decreasing
A. Tt is an interesting question, if & stays finite for any
A>0, or there is a finite limiting value A.>0 at which &
becomes divergent. According to recent numerical work [9]
this second scenario holds, so that for weak enough random
fields A<<A, the clusters of parallel spins, which are called
geometrical clusters, percolate the sample.

Geometrical clusters in nonrandom spin systems, such as
in the Ising and the Potts models, have been defined for a
long time [10] and they are also called Ising or Potts clusters.
Their properties have been intensively studied [11] at a finite
temperature 7> 0. In two dimensions the geometrical clus-
ters percolate at a temperature T,, which corresponds to the
critical point of the system [12]: T,=T,. In two dimensions
their fractal dimension can be obtained through conformal
invariance [13] and this value is generally different from the
fractal dimension of the so-called Fortuin-Kasteleyn clusters
[14]. The Fortuin-Kasteleyn clusters are represented by
graphs of the high-temperature series expansion of the mod-
els and can be obtained from the geometrical clusters if
bonds are placed with a probability p=1-e7"¢ where K, is
the critical coupling. The fractal dimension of the Fortuin-
Kasteleyn clusters is directly related to the scaling dimension
of the order parameter. The properties of the geometrical
clusters in the Potts model with a varying p have also been
investigated [15]. In three dimensions the geometrical clus-
ters of any spin orientations percolate in the complete para-
magnetic phase. Here the percolation transition temperature
T, is defined for the minority spin orientation, so that for
T<T,<T, the geometrical clusters of minority spins do not
percolate [16]. In this respect geometrical clusters play a
somewhat analogous role in the 2D RFIM at 7=0 (by vary-
ing A) as the geometrical clusters of minority spins in the 3D
Ising model for T<T, (by varying T).

In this paper we consider the properties of the geometrical
clusters in the 2D RFIM. In previous numerical work [9] a
homogeneous field H was also applied and the behavior of
the magnetization and the susceptibility is studied by varying
H and A. The obtained schematic phase diagram of the
model is presented in Fig. 1, which will be discussed in
detail in Sec. II. In another work [17] nonequilibrium critical
relaxation of the 2D Ising model has been studied, in which
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FIG. 1. (Color online) Schematic phase diagram of geometrical
clusters of the 2D RFIM as obtained in Ref. [9]. In the regions F
and F |, the majority spin clusters are nonpercolating. In P and P,
they are percolating. The phase boundary is indicated by dashed
lines. The transition along arrow (1) is in the standard percolation
universality class. Investigations in this paper are restricted to
H=0, in particular, in the vicinity of the multicritical point along
arrow (2).

the initial state was prepared as the ground state of the
RFIM. By varying A and setting H=0 the geometrical phase
transition is found to influence the properties of the nonequi-
librium dynamical processes by introducing new finite time
and length scales.

In the present paper we study those aspects of the geo-
metrical clusters in the RFIM that have not been yet inves-
tigated in previous work. Here we set H=0, vary the strength
of disorder, and study the distribution of the mass M of the
geometrical clusters R(M,L) in a finite system of linear size
L. In particular, from the scaling form of R(M,L) we calcu-
late both the fractal dimension d; and the distribution expo-
nent [8] 7. We also measure the geometrical correlations
G(r). This is the average over all spin pairs of distance r with
a contribution one, if both spins are in the same geometrical
cluster and zero otherwise. We show that G(r) plays the role
of a standard correlation function in the vicinity of a second-
order phase-transition point. The correlation length associ-
ated to G(r), &(A), is found to be finite for A> A, and diver-
gent for A<A_, thus defining two different regions (see Fig.
1). In the percolating regime A<A_ G(r) exhibits quasi-
long-range order G(r) ~ r~". We have also studied conformal
aspects of G, in the percolating regime.

The structure of the paper is the following. The model, the
numerical method, and the known results are given in Sec. II.
Our results are presented in Sec. III and discussed in Sec. I'V.

II. MODEL, NUMERICAL METHOD,
AND KNOWN RESULTS

The RFIM is defined by the Hamiltonian

H=-JD, O'iO'j—E(/’li-i-H)O'i, (1)
(ij) i
where o;=+1 is an Ising spin located at site i of a square
lattice. The ferromagnetic nearest-neighbor coupling is cho-
sen to be J=1, whereas the s; random fields are independent
variables that are taken from a symmetric Gaussian distribu-
tion,
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P(h) = 1 { h_lz} 2)
T 2wl TP oA )

which has a variance A. For completeness in Eq. (2) we have
also included a homogeneous field of strength, H. During our
numerical calculations we shall put H=0.

We are interested in the properties of the system at 7=0
when all information is encoded in its ground state. The
problem of finding the ground state of the RFIM is a non-
trivial task, but can be exactly solved through a mapping to a
maximum flow problem [18]. For this latter problem there
are very efficient combinatorial optimization algorithms [19]
that work in strongly polynomial time. With this method fi-
nite systems as large as L=500 can be treated numerically.

At H=0 and for A>0 in the ground state of the RFIM
there is no magnetic long-range order [7]. This can be illus-
trated by the average spin-spin correlation function C(r)
=(0y0,), which is averaged over all pairs of spins having a
distance r apart and {---) stands for the calculation in the
ground state. C(r) goes to zero exponentially with the dis-
tance r. In the presence of a homogeneous field H # 0, there
is a finite magnetization m(H)={o) # 0, and one can measure
the magnetic susceptibility x(H). By varying H, however,
x(H) displays no singularity [9].

The ground state of the RFIM can be visualized by denot-
ing the up and down spins by different symbols. In this pic-
ture the domains of parallel spins form geometrical clusters,
the structure of which depends on the value of A (and also
H). The typical size of the clusters (of majority spins) &
serves as a bulk-length scale in the problem. Between large,
oppositely magnetized clusters there is an interface, which is
smooth for small lengths, up to /<[, and its roughness is
seen only for larger scales, for />/,. Here [, is the so-called
breaking-up length. For weak random fields the breaking-up
length asymptotically behaves as [20]

I, ~ exp(A/A?), (3)

thus it is divergent as A—0. The existence of the
breaking-up length imposes limitations on the possible nu-
merical calculations. The linear size of the system L should
be much larger than [, therefore one cannot use a too small
value of A. Due to this reason we have not reduced A below
1.2-1.4 for the system sizes we could treat numerically.
Some aspects of the structure of the geometrical clusters
for a nonzero homogeneous field has been studied in Ref. [9]
(see the phase diagram in Fig. 1). For a fixed A> A, the size
of the majority spin clusters ¢ is finite for small H, but mo-
notonously increasing with increasing H. There is a threshold
value H,(A) when the majority spins percolate the sample
and for H>H,(A) a finite fraction of the majority spins be-
longs to the infinite cluster. Close to the percolation point
[see arrow (1) in Fig. 1], the percolation probability is found
to depend on the scaling combination L(H,—H)", with
v,=4/3 characteristic of the 2D short-range percolation tran-
sition point [8]. Also, the fractal dimension of the geometri-
cal clusters at the percolation point is found [9] to be com-
patible with that of standard percolation [8] d,=91/48.
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FIG. 2. (Color online) Scaling plot of the cu-

mulative distribution of the mass of the geometri-
cal clusters at A=1.8, using the fractal dimension
of standard percolation and for different finite

In R(M,L)

systems. In the central part of the curves larger
systems have somewhat larger values. In the inset
(a) the effective fractal dimension is presented as
calculated from the optimal scaling collapse of
the curves for different values of A. Here the
dashed (orange) line represents the fractal dimen-
sion of standard percolation. In the inset (b) ex-
trapolation of the 7exponents calculated at differ-
ent finite systems is presented for A=1.4 (X),
A=1.6 (+), and A=1.8 (O).

In(M/L"

According to the numerical results, as A is decreased H,
tends to zero at A, as H,~(A-A,)?, with A, =~1.65 and
¢=2.05.

In the following section we concentrate on the properties
of the geometrical clusters at H=0. In particular, we study
the distribution of their mass and introduce and investigate a
correlation function, which is associated to geometrical clus-
ters. In these investigations we approach the multicritical
point at A=A, and H=0 along arrow (2) in Fig. 1. With these
investigations we want to shed light on the possible geo-
metrical phase transition of the system that takes place at A,.

III. RESULTS

We have considered the RFIM on L XL square lattices
with periodic boundary conditions in both directions.
The strength of the random field is varied in the range
1.2 <A <4, where the lower limiting value is set by the con-
dition L>1[,(A), where the breaking-up length is given in Eq.
(3). Using the combinatorial optimization algorithm we have
calculated the ground-state configuration exactly for different
finite samples up to a linear size L=500. Averages are
performed over typically 10000 different realizations of
disorder.

A. Distribution of the mass of geometrical clusters

We start to study the cumulative distribution of the mass
(number of spins) M of the clusters, which is denoted by
R(M,L). This measures the fraction of clusters having at
least a mass of M. According to scaling theory developed for
standard percolation [8] this distribution asymptotically be-
haves as

R(M,L)= M""R(M/L%), (4)

with a characteristic exponent 7=2/d;. Thus the only param-
eter that enters into this expression is the fractal dimension

of the clusters d;. This relation is expected to hold at the
critical point, where the correlation length ¢, associated to
geometrical correlations is divergent. However, Eq. (4) can
be a good approximation outside the critical point, too, pro-
vided the correlation length § is much larger than the size of
the system L. To compute R(M,L) we have performed clus-
ter statistics over 10 000 different random samples and the
distributions obtained for different finite systems are scaled
together using the relation in Eq. (4). As an illustration in
Fig. 2 we present the scaled cumulative distribution func-
tions at the specific value A=1.8, in which we used the frac-
tal dimension of standard percolation [8], d;=91/48. The
scaling collapse in Fig. 2 is indeed satisfactory. Repeating
the same procedure in the range of 1.4<A<2.6 we have
obtained still acceptable data collapse. This means that in
this regime the condition £> L is satisfied and we can con-
clude that the critical point A, is also located in this range.

We have also estimated the value of the fractal dimension
from the optimal scaling collapse of the curves. For this we
have measured the surface of the overlap of the scaled curves
for different values of the parameter d; and at the true fractal
dimension the overlap surface is minimal (see Ref. [27]).
The measured effective, i.e., A-dependent fractal dimensions
are presented in the inset (a) of Fig. 2. In the range of
1.6 <A <2, the effective fractal dimensions are approxi-
mately constant and consistent with dy=1.89(2). For A>2,
the effective df starts to decrease, which is a clear indication
that the correlation length is not large enough. The decrease
of dy for A<1.6 is probably due to the large value of the
breaking-up lengths, which starts to approach the size of the
system.

From the slope of the curves in Fig. 2 in the log-log plot
we have measured the exponent 7, which is defined in Eq.
(4). The measured effective exponents for different finite
sizes are plotted in the inset (b) of Fig. 2 for three different
values of A. Here strong finite-size dependence is visible so
that we have to perform an extrapolation procedure in terms
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FIG. 3. (Color online) Geometrical correlations in a log-log plot
for A=1.8 and for different system sizes L=64,...,256, from the
top to the bottom. The theoretical prediction of the asymptotic be-
havior is indicated by a straight dotted line.

of 1/L. The extrapolated value, as seen in the inset (b)
of Fig. 2, is given by 7=1.055(3), and this is independent of
the A we considered. We note that our estimate fits very
well to the theoretical value of standard percolation [8]
7=96/91=1.055. We can thus conclude that the distribution
function of the mass of the geometrical clusters nicely satis-
fies the scaling prediction in Eq. (4) and the fractal dimen-
sion coincides with that of standard percolation.

B. Geometrical correlations

Here—using the analogy with ordinary percolation—we
introduce the geometrical correlation function G(r), which is
associated to the geometrical clusters. By definition between
two spins the geometrical correlation is one, if both spins
belong to the same geometrical cluster and zero otherwise.
G(r) is then obtained by averaging the correlations over
all pairs of spins having a distance r. In the noncritical
state, where &£<<oo, the geometrical correlation function is
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short ranged and expected to decay asymptotically as
G(r) ~exp(=r/£). On the other hand, at the critical point the
geometrical correlation function has an algebraic decay,
G(r) ~r 7, where the decay exponent 7 is related to the frac-
tal dimension as 7=2(d-dy), through scaling theory.

In practical calculations the system has a finite size L
and in the critical region the geometrical correlation function
G(r,L) is expected to behave asymptotically as G(r,L)

=r~"G(r/L). Here the scaling function G(y) should approach
a limiting finite value for small arguments, so that the decay
exponent 7 can be calculated for large finite systems, if
1 <r<L. As an illustration we show in Fig. 3 the geometri-
cal correlation function for different finite systems in a
log-log plot for A=1.8. Indeed the slope of the curves
(of the largest systems) in the region 10<r<40 is compat-
ible with the theoretical prediction of ordinary percolation
n=5/24=0.208.

In order to obtain a more accurate estimate of the
asymptotic behavior of the geometrical correlation function
we measured the correlations between two points of maximal
distance, i.e., at r=L/2. The maximal distance correlation
function defined in this way, G(L)=G(r=L/2,L), is ex-

pected to behave in the critical region as G(L)=L""G(L/ b,
thus it is advisable to consider the scaled maximal distance

correlation function, L”G(L)=G(L/§). In Fig. 4 we have
plotted this function for different values of A.

Here one can identify two different regimes as far as the
large L dependence of the scaled correlation function is con-
cerned. For strong random fields A> A, the scaled correla-
tions start to decay to zero, so that the correlation length is
finite and the geometrical clusters are nonpercolating. On the
other hand, for weak random fields A<<A_, the scaled corre-
lations approach a finite limiting value, so that the correla-
tion length is divergent and we are in the phase in which the
geometrical clusters are percolating. This conclusion is the
same as that obtained through the analysis of the spanning
probability in Ref. [9].

The threshold value of A, can be calculated by analyzing
the behavior of the correlation length, which can be deduced
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FIG. 4. (Color online) Scaled maximal dis-
= tance geometrical correlations for different values
of A=1.20,...,2.20, from the top to the bottom.
The scaled correlations seem to reach a constant
limiting value for A=< 1.6, thus here the correla-
tion length is divergent. For stronger random
fields the correlations decay to zero, although the
correlation length is still a large finite value.
Inset: the correlation length as a function of

A-A, in a log-log plot. The best fit is obtained

with A.=1.65 and with an exponent v=1.98(5).
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FIG. 5. (Color online) Effective decay expo-
nents calculated in periodic strips of width L,,
through Eq. (7). The dashed straight line indicates
extrapolation through 1/L,,. Inset (a): Geometri-
cal correlation function at A=1.8 in a strip of
width L,,=40 and for different lengths, L;=384,

448, and 512, from the top to the bottom. In a
- semilogarithmic plot the slope of the limiting
curve is indicated by a dashed line and given by
1/&(L,,). Inset (b): A dependence of the effective
decay exponent for L,,=40.

b)l |
0232 - :
0237 . _ -
= T i o mE
L _ X%
024F 2B - ¥ -
0.226 - IR D 2 »
1.6 1.8 2 % ' _
= = A = ;/,f‘ = L]—384
,i(,/; 22 Ll:448
7% — 1,=512
/’/’ = =R 2 L
022 3_]3 0.1 exp /(L)1
001 . —
0 100 200
0.2 L | L 1 L |
0 0.02 0.04 0.06
1L,

from the asymptotic dependence G(LI&) ~exp[-L/(28)].
Close to the critical point the correlation length is expected
to be in the form &A)~(A—-A,)7". As illustrated in the inset
of Fig. 4 the best fit is obtained with A, =~ 1.65, as in Ref. [9],
whereas for the correlation length critical exponent we have
obtained v=1.98(5). This exponent describes the singularity
of ¢ along arrow (2) in Fig. 1. If we want to calculate the
divergence of the correlation length at A. but with a small
homogeneous field H, i.e., along arrow (3) in Fig. 1, we
make use of the known result about the critical boundary,
H,~(A-A,) ¢, Then from scaling theory we obtain
&H,.A)~&0,0)~H,”, with P=v/¢=0.97(5). We note
that this value corresponds to the inverse of the second ther-
mal exponent of tricritical percolation [21] 1/y,,=1.

C. Geometrical correlations in the strip geometry

Critical correlations are generally invariant under confor-
mal transformations and conformal invariance has very im-
portant consequences in two-dimensional systems [22]. One
important application of the conformal method is to trans-
form the correlation functions from one geometry to another.
In this respect it is of interest if also geometrical correlations
are conformally invariant and if one can transform them be-
tween different geometries. To answer this question we have
studied geometrical correlations in the RFIM also in the strip
geometry. It is known that the infinite plane, described by the
complex variable z=x+iy, can be mapped into a periodic
strip of width L,, having the complex variable w=u+iv,
through the logarithmic conformal transformation

L
=—1Inz. 5
" 27T ne )

Then critical correlations in the plane G(z)~ |z|~” are trans-
formed into an asymptotic exponential decay along the strip

GLW(M) -~ exp[_ u/g(Lw)]’ (6)

where the correlation length &(L,) is proportional to the
width of the strip and given by

HL) =2 )
™y

Thus the proportionality factor contains the decay exponent
in the plane, therefore Eq. (7) is called the correlation length-
exponent relation [23,24].

To check the validity of the correlation length-exponent
relation for the RFIM we used strips of widths L,
=16,20,...,40 and calculated the geometrical correlation
function along the strip. The lengths of the strips are taken so
large that the calculated exponential decay in Eq. (6) be-
comes independent of it. This is illustrated in the inset (a) of
Fig. 5. Generally we went at least up to a length of 16 X L,,
sites. After measuring the correlation length for a given L,,,
we have calculated from Eq. (7) an effective, i.e.,
L, -dependent exponent. This calculation is then repeated for
several values of A in the range of 1.4 <A <2.0. For a given
L, the A dependence of the exponents are found to be
smaller than the actual error of the calculation, as shown in
the inset (b) of Fig. 5. Therefore in Fig. 5 we have plotted an
average, i.e., A-independent exponent as a function of 1/L,,.
As seen in this figure the effective exponents have a size
dependence and an extrapolation through 1/L,, leads to the
estimate 7=0.210(4). This value is in good agreement with
the conformal prediction 7=5/24=0.208. Thus we conclude
that our numerical study has confirmed that the correlation
length-exponent relation is valid for geometrical correlations
in the RFIM.

IV. DISCUSSION

In this paper we have considered the RFIM in the square
lattice and studied the structure of its ground state at 7=0.
Since in the ground state of the system there is no ferromag-
netic long-range order we have focused on the properties of
the geometrical clusters consisting of parallel spins. In par-
ticular, we have investigated the distribution of the mass of
the geometrical clusters and studied geometrical correlations,
which are associated to geometrical clusters. In agreement
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with previous investigations [9] the geometrical clusters are
found to have a finite extent for strong random fields,
A>A,, and being percolating for weak random fields
A<A,.For A<A, the fractal dimension of geometrical clus-
ters is calculated by different methods and its value is found
to be in good agreement with short-range percolation. The
geometrical correlation function of the system is calculated
both in the plane and in the strip geometries. It is shown that
the critical geometrical correlation function satisfies both
scaling and conformal invariance. In the vicinity of the geo-
metrical critical point the correlation length is found to di-
verge as &(A)~(A-A,)7", with an exponent v=2, whereas
at the critical disorder A=A, the divergence of &H) in the
presence of a homogeneous field involves the exponent
v=1. This latter is characteristic for tricritical percolation.

We note that our study of geometrical clusters in the
RFIM is somewhat related to the properties of the random
bond Potts model (RBPM) in the large-g limit. As was
shown by Cardy and Jacobsen [25] the interface Hamiltonian
of the RFIM separating different types of geometrical clus-
ters, and the interface Hamiltonian of the RBPM separating
different types of Fortuin-Kasteleyn clusters, can be mapped

PHYSICAL REVIEW E 75, 011131 (2007)

into each other. In this respect the absence of long-range
order in the RFIM corresponds to the absence of phase co-
existence in the RBPM, thus no first-order phase transition in
the presence of bond disorder in 2d [7]. Although the inter-
face Hamiltonian of the two problems are equivalent to each
other, the cluster structure, in particular, the value of the
fractal dimension is different. For the RBPM the conjectured
value [26,27] for the Fortuin-Kasteleyn clusters df =(5
+15)/4=1.809, is considerably smaller than that of the
RFIM. Thus arguments based on the interface Hamiltonian
can be used to study the stability of some phases, but the
actual cluster structure is governed by such critical fluctua-
tions, which are encoded in the details of the Hamiltonian.
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